随着云时代的来临,大数据也吸引了越来越多的关注。进入2012年,大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
在大数据时代里,随着安防
监控的快速发展,大数据与
视频监控技术的结合也越来越深入,目前,大数据对安防监控数据处理能力的要求在六个应用中有具体体现,无论图像升级还是识别方式升级,其最终是在高清的基础上进一步突出了智能监控的作用。关于智能、关于高清,仍然有许多技术应用值得我们去挖掘。
低照度环境不利于成像图像增加技术弥补缺陷
低照度环境下监控
摄像机成像一片漆黑或者一片白,显然在低光照环境下,图像增加技术应该来弥补缺陷。
正如业内分析得出,图像增强算法可以有效改善由于光照、雾气等原因造成的图像质量问题,使图像细节明显改善。简单理解这就是一种图像优化技术。除了图像增强外,还有一种图像复原技术也特别适用于夜视监控,只不过这种捕捉环境更具有针对性。
图像复原技术更适合捕捉快速移动的物体,例如行驶中的汽车。如果要正确、完整地捕捉车牌信息。聚焦、运动等原因造成图像模糊的过程进行建模,利用解卷积算法反推原始图像信息的算法,能部分恢复车牌文字、人脸等关键信息。
例如抓拍车牌包括以下几项信息:最重要的是车牌号码、车牌颜色、字母、文字等,特别是针对易混淆的数字“0”和字母“Q”等,处理系统还需要特别对待。当然有些监控探头不仅捕捉车牌信息,连带测速功能也一同植入,这对于司机朋友来说绝对是个“雷”。
图像复原技术适用于车牌识别
关于图像复原技术,特别适用于车牌识别。往往有些狡猾的犯罪分子,可能会使用假车牌,这情况给破案带来很大麻烦。法网恢恢疏而不漏,不给犯罪分子可乘之机,新型车脸检索功能可判断嫌疑人是否修改或更换号牌,车脸检索同样是输入样例图片,找出相似车辆及车牌号码,实现快速检索的功能。