焦点评论 > 正文
GPU成为深度学习Training事实上工具标准
2017/12/28 16:17   中国安防行业网      关键字:GPU,深度学习,Training,工具标准      浏览量:
目前来看,NVIDIA作为人工智能计算平台的领导者,但事实是,一开始并非NVIDIA选择了人工智能,而是人工智能的研究者选择了GPU,进而成就了NVIDIA。在2012年,Alex利用深度学习+GPU的方案,一举赢得ImageNetLSVRC-2010图像识别大赛,并奇迹般地将识别成功率从74%提升到85%。NVIDIA敏锐地觉察到了这一趋势,并大力优化基于GPU的深度学习生态系统,并加速迭代开发,三年时间将GPU性能提升了65倍,从而奠定了目前的王者之位。

  对于人工智能计算架构来说,一般可以归结为三类模式:CPU+GPU,CPU+FPGA,CPU+ASIC(专用集成电路)。其中,应用于图形、图像处理领域的GPU可以并行处理大量数据,非常适合深度学习的高并行、高本地化数据场景,是目前主流的人工智能计算架构。

  GPU又别称为图形处理器,又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。

  用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重要。

  GPU作为显示卡的“大脑”决定了该显卡的档次和大部分性能,同时GPU也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像与特效时主要依赖CPU的处理能力,称为软加速。3D显示芯片是把三维图像和特效处理功能集中在显示芯片内,也就是所谓的“硬件加速”功能。显示芯片一般是显示卡上最大的芯片。时下市场上的显卡大多采用NVIDIA和AMD-ATI两家公司的图形处理芯片。NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GPU的概念。从此NV显卡的芯就用这个新名字GPU来称呼。GPU使显卡削减了对CPU的依赖,并实行部分原本CPU的工作,更加是在3D图形处理时。

  GPU设计之初非针对深度学习而是并行计算

  GPU关键性能是并行计算。这意味着可以同时处理运算,而不是一步步进行。复杂问题可被分解为更简单的问题,然后同时进行处理。并行计算适用于HPC和超算领域所涉及的许多问题类型,比如气象、宇宙模型和DNA序列。并不是只有天体物理学家和气象学家才能充分利用并行计算的优点。事实证明,许多企业应用能从并行计算获得超出寻常比例的好处。这包括:数据库查询、密码学领域的暴力搜索、对比不同独立场景的计算机模拟、机器学习/深度学习、地理可视化

  在GPU设计之初,并非针对深度学习,而是图形加速,在NVIDIA推出CUDA架构之前,GPU并无太强对深度学习运算能力的支持。而如今,NVIDIA可以提供基于其GPU的从后端模型训练到前端推理应用的全套深度学习解决方案,一般的开发人员都可以非常容易地上手使用GPU进行深度学习开发,或者高性能运算。而CUDA架构的开发,耗费了NVIDIA巨大的人力物力。可以说,是CUDA这个中间层(computing frame work)的优化,才使得开发者真正爱上了GPU,NVIDIA胜在软件。而CUDA还不能称之为算法,它只是计算硬件与算法之间的桥梁。

  NVIDIA凭借GPU成为人工智能计算平台的领导者

  目前来看,NVIDIA作为人工智能计算平台的领导者,但事实是,一开始并非NVIDIA选择了人工智能,而是人工智能的研究者选择了GPU,进而成就了NVIDIA。在2012年,Alex利用深度学习+GPU的方案,一举赢得ImageNetLSVRC-2010图像识别大赛,并奇迹般地将识别成功率从74%提升到85%。NVIDIA敏锐地觉察到了这一趋势,并大力优化基于GPU的深度学习生态系统,并加速迭代开发,三年时间将GPU性能提升了65倍,从而奠定了目前的王者之位。

  在深度学习过程中,分为训练(training)和推断(inference)两个环节:训练环境通常需要通过大量的数据输入,或采取增强学习等非监督学习方法,训练出一个复杂的深度神经网络模型。训练过程由于涉及海量的训练数据(大数据)和复杂的深度神经网络结构,需要的计算规模非常庞大,通常需要GPU集群训练几天甚至数周的时间,在训练环节GPU目前暂时扮演着难以轻易替代的角色。

  毫无疑问在深度学习的Training阶段,GPU成为了目前一项事实的工具标准。由于AMD今年来在通用计算以及生态圈构建方面都长期缺位,导致了在深度学习GPU加速市场NVIDIA一家独大的局面。根据NVIDIA今年Q2年报显示,NVIDIA的Q2收入为达到22.3亿美元,毛利率更是达到了惊人的58.4%,其中数据中心(主要为面向深度学习的Tesla加速服务器)Q2收入4.16亿美元,同比上升达175.5%。

  为了保持领先型,NVIDIA一方面在产品研发上,耗费了高达30亿美元的研发投入,推出了基于Volta、首款速度超越100TFlops的处理器Tesla,主打工业级超大规模深度网络加速;另外一方面是加强人工智能软件堆栈体系的生态培育,即提供易用、完善的GPU深度学习平台,不断完善CUDA、cuDNN等套件以及深度学习框架、深度学习类库来保持NVIDIA体系GPU加速方案的粘性。第三是推出NVIDIA GPU Cloud云计算平台,除了提供GPU云加速服务外,NVIDIA以NVDocker方式提供全面集成和优化的深度学习框架容器库,以其便利性进一步吸引中小AI开发者使用其平台。

微信扫描二维码,关注公众号。