指纹识别技术把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。每个人(包括指纹在内)皮肤纹路在图案、断点和交叉点上各不相同,是唯一的,依靠这种唯一性和稳定性,我们才能创造指纹识别技术。每个人包括指纹在内的皮肤纹路在图案、断点和交叉点上各不相同,呈现唯一性且终生不变。
就应用方法而言,指纹识别技术可分为验证和辨识。
验证:就是通过把一个现场采集到的指纹与一个已经登记的指纹进行一对一的比对来确定身份的过程。指纹以一定的压缩格式存储,并与其姓名或其标识(ID,PIN)联系起来。随后在对比现场,先验证其标识,然后利用系统的指纹与现场采集的指纹比对来证明其标识是合法的。验证其实回答了这样一个问题:“他是他自称的这个人吗?”这是应用系统中使用得较多的方法。
辨识:则是把现场采集到的指纹同指纹数据库中的指纹逐一对比,从中找出与现场指纹相匹配的指纹。这也叫“一对多匹配”。辨识其实是回答了这样一个问题:“他是谁?”指纹是人体独一无二的特征,其复杂度足以提供用于鉴别的特征。随着相关支持技术的逐步成熟,指纹识别技术经过多年的发展已成为目前最方便、可靠、非侵害和价格便宜的生物识别技术解决方案,对于广大市场的应用有着很大的发展潜力。
目前,市场中应用的指纹图像的获取技术主要有4种类型:光学扫描设备、温差感应式指纹传感器、半导体指纹传感器、超声波指纹扫描。
一、光学识别技术
借助光学技术采集指纹是历史最久远、使用最广泛的技术。将手指放在光学镜片上,手指在内置光源照射下,用棱镜将其投射在电荷耦合器件(CCD)上,进而形成脊线(指纹图像中具有一定宽度和走向的纹线)呈黑色、谷线(纹线之间的凹陷部分)呈白色的数字化的、可被指纹设备算法处理的多灰度指纹图像。
光学的指纹采集技术有明显的优点:它已经过较长时间的应用考验,一定程度上适应温度的变异,可达到500DPI的较高分辨率等,最主要是价格低廉。也有明显的缺点:由于要求足够长的光程,因此要求足够大的尺寸,而且过分干燥和过分油腻的手指也将使光学指纹产品的效果变坏。
光学指纹传感局限性体现于潜在指印方面(潜在指印是手指在台板上按完后留下的),不但会降低指纹图像的质量,严重时还可能导致2个指印重叠,显然,难以满足实际应用需要。此外,台板涂层及CCD阵列会随时间推移产生损耗,可能导致采集的指纹图像质量下降。但是具有无法进行活体指纹鉴别、对干湿手指的适用性差等缺点。
光学指纹识别系统由于光不能穿透皮肤表层(死性皮肤层),所以只能够扫描手指皮肤的表面,或者扫描到死性皮肤层,但不能深入真皮层。在这种情况下,手指表面的干净程度,直接影响到识别的效果。如果,用户手指上粘了较多的灰尘,可能就会出现识别出错的情况。并且,如果人们按照手指,做一个指纹手模,也可能通过识别系统,对于用户而言,使用起来不是很安全和稳定。
二、温差感应式识别技术
温差感应式识别技术是基于温度感应的原理而制成的,每个像素都相当于一个微型化的电荷传感器,用来感应手指与芯片映像区域之间某点的温度差,产生一个代表图像信息的电信号。
它的优点是可在0.1s内获取指纹图像,而且传感器体积和面积最小,即目前通常所说的滑动式指纹识别仪就是采用该技术。缺点是:受制于温度局限,时间一长,手指和芯片就处于相同的温度了。
三、半导体硅感技术(电容式识别技术)
20世纪90年代后期,基于半导体硅电容效应的技术趋于成熟。硅传感器成为电容的一个极板,手指则是另一极板,利用手指纹线的嵴和峪相对于平滑的硅传感器之间的电容差,形成8bit的灰度图像。
电容传感器发出电子信号,电子信号将穿过手指的表面和死性皮肤层,直达手指皮肤的活体层(真皮层),直接读取指纹图案。由于深入真皮层,传感器能够捕获更多真实数据,不易受手指表面尘污的影响,提高辨识准确率,有效防止辨识错误。半导体指纹传感器包括半导体压感式传感器、半导体温度感应传感器等,其中,应用最广泛的是半导体电容式指纹传感器。
半导体电容传感器根据指纹的嵴和峪与半导体电容感应颗粒形成的电容值大小不同,来判断什么位置是嵴什么位置是峪。其工作过程是通过对每个像素点上的电容感应颗粒预先充电到某一参考电压。
当手指接触到半导体电容指纹表现上时,因为嵴是凸起、峪是凹下,根据电容值与距离的关系,会在嵴和峪的地方形成不同的电容值。然后利用放电电流进行放电。因为嵴和峪对应的电容值不同,所以其放电的速度也不同。
嵴下的像素(电容量高)放电较慢,而处于峪下的像素(电容量低)放电较快。根据放电率的不同,可以探测到嵴和峪的位置,从而形成指纹图像数据。
与光学设备多采用人工调整改善图像质量不同,电容传感器采用自动控制技术调节指纹图像像素以及指纹局部范围敏感程度,在不同环境下结合反馈信息生成高质量图像。由于提供了局部调整能力,即使对比度差的图像(如手指压得较轻的区域)也能被有效检测到,并在捕捉瞬间为这些像素提高灵敏度,生成高质量指纹图像。
半导体电容指纹传感器优点为图像质量较好、一般无畸变、尺寸较小、易集成于各种设备。其发出的电子信号将穿过手指的表面和死性皮肤层,达到手指皮肤的活体层(真皮层),直接读取指纹图案,从而大大提高了系统的安全性。
半导体硅感技术最重要的优点是能够达到活体指纹识别。还可以在较小的表面上获得比光学技术更好的图像质量,在1cm&TImes;1.5cm的表面上获得200-300线的分辨率(较小的表面也导致成本的下降和能被集成到更小的设备中)。体积小、成本低,成像精度高,而且耗电量很小,因此非常适合在安全防范和高档消费类电子产品中使用,被称为光学以后的第二代指纹识别技术。
四、超声波识别技术
超声波指纹采集是一种新型技术,其原理是利用超声波具有穿透材料的能力,且随材料的不同产生大小不同的回波(超声波到达不同材质表面时,被吸收、穿透与反射的程度不同)。因此,利用皮肤与空气对于声波阻抗的差异,就可以区分指纹嵴与峪所在的位置。
超声波技术所使用的超声波频率为1&TImes;104Hz-1&TImes;109Hz,能量被控制在对人体无损的程度(与医学诊断的强度相同)。超声波技术产品能够达到最好的精度,它对手指和平面的清洁程度要求较低,但其采集时间会明显地长于前述两类产品,而且价格昂贵,也并不能做到活体指纹识别,所以目前使用稀少。
指纹识别技术是生物识别技术的主流技术,是身份认证的主流技术,它在各行各业得到了广泛的应用。现在用指纹功能的设备,必须有一个物理键让你扫描一个指纹,但随着触控和显示芯片的发展,高度集成化,未来的发展趋势是任何位置,我们可以在屏幕上完成的指纹识别。嵌入式指纹识别出现在核心,所以任何限制不影响设备制造商的工业设计的设备。随着指纹识别和触摸显示技术的融合越来越成熟,它也将越来越广泛,例如,快速付款、识别、个性化偏好定制等,很可能将密码用指纹识别技术所取代。
微信扫描二维码,关注公众号。