生物特征识别在落地应用受到多种难题困扰
2020/10/15 16:56   中国安防行业网      关键字:生物特征识别 落地应用      浏览量:
以人脸识别应用为例,虽然人脸识别技术经历了较长的研究阶段,并且应用也开始落地,但至今人脸识别技术还是被认为是生物特征识别技术中较为困难的研究课题之一。另外,人脸识别技术自身优势也存在两面性,自然性、不易察觉以及非接触性也致使人脸识别技术在一些特定领域面临环境复杂性。
  在移动互联智能化时代,生物特征识别技术已经非常成熟并使用在了常见的电子设备中,但在实际应用中,因价格、市场、技术、硬件、网络等的限制还处在产业化的进行中,应用落地还存在很大难度。
  以人脸识别应用为例,虽然人脸识别技术经历了较长的研究阶段,并且应用也开始落地,但至今人脸识别技术还是被认为是生物特征识别技术中较为困难的研究课题之一。另外,人脸识别技术自身优势也存在两面性,自然性、不易察觉以及非接触性也致使人脸识别技术在一些特定领域面临环境复杂性。
  在进行人脸识别前需要先对监控场景中的人脸进行定位,即人脸检测。人脸检测的正确与否直接影响人脸识别性能。当监控场景的背景较为复杂时,人脸检测率也会随之降低,因此能够适应复杂背景环境的人脸检测算法是人脸识别技术的难点之一。
  在智能视频监控系统的实际应用中,会由于监控环境光线的变化造成检测到的人脸图像存在不同的阴暗变化,不同光照条件下,人脸识别虽然在性能上比有显著提高,但是还没在根本上克服光照对识别率的影响。
  人脸的角度多样性主要是指由于拍摄角度的不同导致检测到的人脸图像的旋转,包括平面旋转和深度旋转。同时,表情变化对人脸图像也有影响,拍摄角度的变化同样会导致人脸轮廓的变化,除此之外,由于角度的变化,可能会导致人脸的部分特征无法被正确提取,进一步导致人脸的错误识别。
  即使是非人为故意遮挡,在实际应用时检测到的人脸图像也经常会出现如帽子、眼镜等遮挡物,除了这些,胡子以及刘海的变化也直接影响人脸的特征提取,当人脸图像发生遮挡时,人脸的很多信息会丢失,导致人脸识别算法出错或失效。
  除了人脸识别外,体态识别技术应用中也受到跨视角变化、着装变化、附带物变化,画面质量等的影响,另外在落地应用时,步态识别需要随机采样大量的时序步态数据进行模型学习,建步态库,然后根据步态数据提供系统解决方案。
  在前期建库采集数据的时候,步态识别的正面识别率低,容易受到性别、步长、节奏、速度等的干扰;同时,相机角度、天气条件、遮挡物、附属物、道路崎岖、甚至衣服光照等都会影响准确性;比较难获取年龄、性别等信息,而且非普遍性,如残疾人不适合步态识别技术。
  在落地商用的过程中,大多数监控场景都是比较复杂的,可能存在多个运动物体,行人图像容易受天气、光照等外界因素的影响,而有所变化。

微信扫描二维码,关注公众号。