技术动态 > 正文
边缘计算正在兴起 终端芯片是重要推动力
2018/12/29 17:27   中国安防行业网      关键字:边缘计算,芯片,推动力      浏览量:
边缘服务器市场尚属于新兴市场,加入战场的公司并不多,目前仅有Nvidia,华为,比特大陆等, 而且不同的公司可以主打不同的细分市场,因此市场竞争远未饱和。Nvidia的Xavier芯片,华为的Ascend 310,比特大陆则是主打性价比路线,BM1682自带视频解码和后处理操作且集成了CPU。 目前在中国市场,最主要的市场还是安防等应用的智能摄像头。
  人工智能芯片市场第一个得到关注的是云端服务器市场,Nvidia的GPU以其强劲的算力掌握了大部分市场。随着人工智能的铺开,边缘计算(edge computing)的概念也得到了越来越多的认可。边缘计算的相关人工智能芯片市场也正在兴起。
br>
  除终端设备上的直接做计算之外,还可以把终端的数据放到离终端比较近的本地服务器去计算。边缘计算的两种市场目前都已经在起飞。而相关AI芯片也得到了许多关注。标志性事件是华为的两次芯片发布会。去年秋天发布的麒麟970芯片附带NPU,可以说是人工智能部署在手机的一次重要尝试。今年秋天又发布了Ascend系列芯片,其中Ascend 310芯片也是针对边缘服务器市场并且华为已经开发了基于Ascend 310的边缘计算服务器准备部署在自动驾驶领域。

  边缘服务器的芯片

  边缘服务器的市场现在来看将是人工智能最早落地的应用之一(甚至比手机里的人工智能还要早且成熟),因为目前中国的智能摄像头产品已经在安防、人脸识别等领域真正落地,而边缘服务器是很适合智能摄像头的产品形态,一方面在不少此类应用中对于可靠性有很强的需求,因此部署在边缘端的人工智能更适合;另一方面智能摄像头的计算可以集群化操作,因此一个边缘服务器处理多路智能摄像头的形式是非常经济的方式。除了智能摄像头之外,无人驾驶也是边缘服务器的一个例子,因为在无人车里面需要做传感器融合做大量计算,相当于在无人车上部署了一个边缘服务器。

  边缘服务器市场通常对于通用性有一定需求,因此比较合适的方案是处理器加上通用型深度学习加速芯片,而深度学习加速芯片最常见的形式是以PCIe加速卡的形式插到主板上,并与主处理器协同工作。值得注意的是,由于边缘服务器对于人工智能算法精度有一定要求,因此往往使用的是类似半精度浮点数的运算方式,很多边缘终端芯片上常见的INT-4甚至INT-2等激进的低精度整数运算由于损失精度过多因此在边缘服务器不太适合。

  边缘服务器市场尚属于新兴市场,加入战场的公司并不多,目前仅有Nvidia,华为,比特大陆等, 而且不同的公司可以主打不同的细分市场,因此市场竞争远未饱和。Nvidia的Xavier芯片,华为的Ascend 310,比特大陆则是主打性价比路线,BM1682自带视频解码和后处理操作且集成了CPU。 目前在中国市场,最主要的市场还是安防等应用的智能摄像头。

  边缘终端市场芯片

  边缘终端市场是指直接在终端设备上做计算的AI芯片,对于功耗和能效比有很强的要求。目前来看,边缘终端市场有两种形态的芯片产品,一种是针对特定应用的SoC,一种是通用加速器做独立芯片。SoC面向专用市场,在芯片中深度学习加速计算事实上只是一小部分,而其他大部分芯片面积则交给了主控处理器、视频解码等等模块。SoC集成度高,一般的技术路线是用新的SoC代替原有的不支持深度学习加速的SoC做更新换代。

  一个典型的例子就是华为麒麟系列SoC加入寒武纪的NPU,就属于SoC自己的更新换代。专注于AI芯片的厂商进入SoC市场的策略往往是提供IP授权,以发挥自己的强项(如寒武纪给华为提供NPU IP)。对于SoC往往针对的是一个特定市场,因为其中的模块都是针对该应用而设计,如果用在其他应用中则显得浪费,例如麒麟SoC最适合的场景是手机,其中包含的GPU、ISP、Modem等都是为了手机场景打造,如果是用在工业场景则这些模组都闲置了,因此也就引出了另一个终端通用型深度学习加速器芯片市场。该市场相对于SoC市场来说允许较低的集成度,即可以在主控芯片之外再搭配额外的芯片以支持相应功能。

  在终端SoC市场,事实上竞争已经白热化,华为、高通等公司都纷纷推出专属的SoC搭载 AI加速模组,而AI加速模组IP的提供商也有ARM,Cadence,CEVA等传统IP提供商以及寒武纪这样的初创公司。不少传统SoC芯片公司都纷纷在自家SoC中加入自研或授权的人工智能模块。

  在IP授权方面,Cadence和ARM入局意味着小公司面临巨大压力,因为IP市场存在一定的头部效应,且Cadence和ARM可以通过与其他的优势IP做捆绑销售来推销其人工智能IP,在人工智能并非最关键SoC模组的市场现状下,小公司想要与Cadence和ARM等巨头竞争只能走差异化,例如超低功耗或模拟计算等路线。

  终端通用深度学习加速器芯片市场的应用则刚起步,之前Movidius推出的神经计算加速棒并未引起巨大反响。但是这并不代表这个市场不存在,而是还处于幼年期,需要培养,因此许多公司在这个市场布局主要一是培养开发者生态,另一方面也探索研究哪个市场最有潜力,预计在市场成熟之后再收缩战线,针对几个重要的应用推出相应的优化芯片,从而占领最合适的市场。因此,目前对于这个市场最合适的策略是推出开发板和插件式加速硬件(如USB加速棒)这样简单易用的产品,这样厂商和客户可以一起探索市场需求,决定最佳产品形态。 比特大陆就是在这个市场跟随Movidius推出了BM1880芯片,并配套推出了开发板、芯片模组以及USB加速棒等多种硬件形态供客户挑选。

  未来市场

  边缘计算等人工智能芯片应用目前最大的市场其实在中国。这是因为中国的人工智能落地情况远好于美国。在政府的支持下,旷视、商汤、依图等初创企业纷纷推出优秀的产品并在市场上站住了脚跟,这一方面加速了基于人工智能的应用成熟,另一方面也给人工智能芯片带来了市场,从而为人工智能的完整产业链的成熟带来了机会。

微信扫描二维码,关注公众号。