③超深亚微米(UDSM)、纳米集成电路的设计理论和技术。
因此,SOC是将信息处理的算法、逻辑电路的结构、各个层次的电路以器件的方式集成在一块芯片上,从而具备整机的功能。这里包括:
①算法功能的突破。增加模糊算法、神经元算法以及安全算法。
②电路结构突破。因CMOS有很长的生命力,由于引入RF和Flash等又将有新的发展。
具体地说,SOC设计的关键技术主要包括总线架构技术、IP核可复用技术、软硬件协同设计技术、SOC验证技术、可测性设计技术、低功耗设计技术、超深亚微米电路实现技术等;此外,还要做嵌入式软件移植、开发研究等。
下面再介绍芯片SOC技术的发展现状及其在安防集成中的应用。
2、芯片SOC技术的发展现状
集成电路(IC)的发展已有40多年的历史,它一直遵循着1965年摩尔提出的规律增长,即集成电路中晶体管的数目每18个月增加一倍。每2~3年制造技术更新一代,这是基于栅长不断缩小的结果,器件栅长的缩小又基本上依照等比例缩小的原则,并促进其它工艺参数的提高。现按此规律,集成电路的基本单元CMOS器件已进入超深亚微米乃至纳米加工时代(即器件的栅长小于50nm)。由于信息市场的需求和微电子自身的发展,引发了以微细加工(集成电路特征尺寸不断缩小)为主要特征的多种工艺集成技术和面向应用的系统级芯片的发展。随着半导体产业进入纳米加工时代,在单一集成电路芯片上就可以实现一个复杂的电子系统,诸如手机芯片、数字电视芯片、DVD芯片等等。
世界集成电路大生产目前已经进入纳米时代,全球多条90nm/12英寸生产线用于规模化生产,基于65nm之间水平线宽的生产技术已经基本成形,Intel公司的CPU芯片已经采用45nm的生产工艺。在世界最高水平的单片集成电路芯片上,所容纳的元器件数量已经达到80多亿个。如2006年,单片系统集成芯片的最小特征尺寸0.09μm、芯片集成度达2亿以上个晶体管、芯片面积520mm2、7~8层金属连线、管脚数4000个、工作电压0.9~1.2V、工作频率2~2.5GHz,功率160W。到2010年,己提高到0.07μm的水平。而硅IC晶片直径尺寸,如2000年~2005年己从200mm转向300mm,2006~2010年又转向到400mm。单片硅集成技术最小特征尺寸的发展状况如表1所示。
表1、单片硅集成技术最小特征尺寸的发展状况
整个半导体工艺技术的发展随着晶体管栅长及光刻间距持续地缩小,使得芯片能够在面积越来越小的同时,获得较快的运行速度,同时也使得一个晶圆所能产出的芯片数目越来越多,大幅提高晶圆工艺的生产力。整个半导体工艺技术的发展仍是呈现持续加速的状态,特别是在DRAM、MPU等领域,而光刻等微细加工技术则呈现出稳定的发展。
在集成电路设计中,硅技术是主流技术,硅集成电路产品是主流产品,占集成电路设计的90%以上。正因为硅集成电路设计的重要性,各国都很重视。目前,产业链的上游仍被美国、日本和欧洲等国家和地区占据,设计、生产和装备等核心技术也由其掌握。
以集成电路为核心的电子信息产业目前超过了以汽车、石油和钢铁为代表的传统的工业而成为第1大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展数据表明,每l~2元集成电路产值,带动10元左右电子工业产值的形成,进而带动100元GDP的增长。发达的国家国民经济总产值增长部分的65%目前与集成电路相关。作为当今世界经济竞争的焦点,拥有自主版权的集成电路日益成为经济发展的关键、社会进步的基础、国际竞争的筹码和国家安全的保障。
随着集成方法学和微细加工技术的持续成熟与应用领域的不断扩大,不同类型的集成电路相互镶嵌,形成了各种嵌入式系统(EmbeddedSystem)和片上系统(SystemonChip即SOC)技术,在实现从集成电路(IC)到系统集成(IS)过渡中,“硅知识产权(IP)模块”和“软、硬件协同设计”技术兴起,可以将一个电子子系统或整个电子系统“集成”在一个硅芯片上,以完成信息加工与处理的功能。如1995年LSILogic公司为Sony公司设计的SOC,可能就是基于IP(IntellectualProperty)核完成SOC设计的最早报导。由于SOC可以充分利用已有的设计积累,显著地提高了ASIC的设计能力,因此发展非常迅速,引起了工业界和学术界的关注。
SOC是集成电路发展的必然趋势,其技术特点是:半导体工艺技术的系统集成;软件系统和硬件系统的集成。
SOC具有的优势是,能
相关专题: